منابع مشابه
Einstein Metrics on Complex Surfaces
Suppose M a compact manifold which admits an Einstein metric g which is Kähler with respect to some complex structure J . Is every other Einstein metric h on M also Kähler-Einstein? If the complex dimension of (M,J) is ≥ 3, the answer is generally no; for example, CP3 admits both the FubiniStudy metric, which is Kähler-Einstein, and a non-Kähler Einstein metric [2] obtained by appropriately squ...
متن کاملEinstein metrics, complex surfaces, and symplectic 4-manifolds
Which smooth compact 4-manifolds admit an Einstein metric with non-negative Einstein constant? A complete answer is provided in the special case of 4-manifolds that also happen to admit either a complex structure or a symplectic structure. A Riemannian manifold (M, g) is said to be Einstein if it has constant Ricci curvature, in the sense that the function v −→ r(v, v) on the unit tangent bundl...
متن کاملBihermitian Metrics on Hopf Surfaces
Inspired by a construction due to Hitchin [20], we produce strongly bihermitian metrics on certain Hopf complex surfaces, which integrate the locally conformally Kähler metrics found by Gauduchon–Ornea [14]. We also show that the Inoue complex surfaces with b2 = 0 do not admit bihermitian metrics. This completes the classification of the compact complex surfaces admitting strongly bihermitian m...
متن کاملProjective complex Finsler metrics
In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...
متن کاملExtremal Hermitian Metrics on Riemann Surfaces with Singularities
0. Introduction. It is a well-known consequence of the classical uniformization theorem that there is a metric with constant Gaussian curvature in each conformal class of any compact Riemann surface. It is natural to ask how to generalize this classical uniformization theory to compact surfaces with conical singularities and with nonempty boundary, or to find a “best metric” on such surfaces. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric and Functional Analysis
سال: 2011
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-011-0133-8